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ABSTRXCT: Independent Modal Space Control (IMSC) is a cmtral
scheme that decouples the space structure into n independent
second-order subsystems according to n controlled modes and
controls each mode independently. It is well-Jnown that the DOC
eliminates cantrol and observation spillover caused when the
conventianal coupled modal control scheme is employed. The
independent cootrol of each mode requires that the number of
actustars be equal to the pumber of modelled modes, which is
very high for a faithful modelling of large space structures. In
this paper, we propose a cantrol scheme that allows ane to use a
reduced number of actuators to control all modelled modes
suboptimally. In particular, the method of generalized inverse
matrices is employed to implement the actuatars such that the
eigenvalves of the clased-loop system are as closed as possible
to thase specified by the optimal IMSC. Computer simulation of
the proposed control scheme an a simply supported beam is given.

1. INTRODUCTION
The develogment of the space shuttle has opened the possibility
of constructing very large structures in space for space
explorations. Two control problems for LSS are attitude comtrol
and shape control. Complex missions impose many stringent
requirements on shape and attitude of the LSS, which lead the
control researchers to the concept of distributed active comtrol
where several actuators and sensors are placed on the structure
to in order to optimize its performance and behavior. There has
been a cmsiderable interest in the area of active control of
large space structures (LSS) [1]-{13]. A number of control
schemes were studied, but they represent one form or another of
modal control {6). Two main modal control schemes are the
coupled modal control and the Independent Modal Space Control
(IMSC) . The former uses an active controller that consists of a
state estimator and a state feedback; the latter decouples the
LSS into n independent subsystems according to n controlled modes
and controls each mode independently by means of a modal filter
[ 5] and an optimal controller. Coupled modal comtrol causes
comtrol and observation spillover that together can destabilize
the LSS [10]. IMSC does not have the spillover problem since
each mode is controlled independently. However in order to
implement the IMSC the number of actuators is required to be
equal to the number of controlled modes which is usually very
buge for a faithful modelling of the LSS. This fact presents a
‘fundamental limitation of IMSC since the required number of
actuators is unrealizable. The main objective of this paper is to
implement the IMSC with a milder requirement of the actuator
number. In other words, we will develop a control scheme that
uses a reduced number of actuators to control all modelled modes
in such a way that the modes of the closed-loop system are as
closed as possible to the optimal modes specified by the IMSC
scheme. In particular, the method of generalized inverse
matrices is employed for the implementation of IMSC.

Matrix notations used in this paper is given below:
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2. SIMQRY (F DEEPENDENT MODAL SPACE OONTROL

The description of a large flexible space structure is given by
the following partial differental differential equations (3}:

NP 2./ 2+ LuP,t) = £(P,t) ity

that must be satisfied at every point P of the domain D, where
u(P,t) is the displacement of Point P, L a linear differential
self-adjoint operator of order 2p, expressing the system
stiffness, M(P) the distributed mass, and F(P,t) the distributed
control force. The displacement u(P,t) is subject to the
Tj‘l(?-t) = 0: im llzrt-tvp (2)

where T., i#1,2....,p are linear differential operator of order
ranging From 0 to (2p-1).

The associated eigenvalue problem is formulated by:

M)r(l’) = ArH(P) ‘b'(P): r=1,2,... {3)
with the boundary conditions:

‘ri¢r(P) =0 ; i=1,2,....p; r=1,2,... (4)
where )\tist.hertheiqennluelnd & (P) is the eigenfunction
(scoetimes also known as Mode Shape) associated with ),
Suppose the operator L is self-adjoint and positive definite, and
all eigenvalues are positive and are ordered so that A1(42<

Since L is self-adjoint, the eigenfunctions are orthogonal and
therefore can be normalized such that:

[Dm,e,an =5 1y (5)
and !OSLQIQ- Agdeg T.L2.... {6)

where is the Kronecker Delta.

Using expansion theorem [3], the solution of u(P,t) can be
obtained as:
up,t) =) ¢ Py () m
r=1

where ur(t) is the modal coordinate. Substituting (7) into (1),
multiplying both sides of the resulting expression by &,
integrating over D and employing (5) and (6), we obtain
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In (8), the mode (or natural) frequency w, is defined as

we = 0 V2 1,2, £}
and the modal control force tx(t) is computed by:

£.(0) = 4".-"’ £(,t) & (10)

In practice, the infinite series in (7) is truncated as

u(P,t) = rz? P (t) (11)
where n is chosen to be sufficiently large so that u(P,t) can be
represented with good fidelity. In this case we are dealing only
with the first n modes. :

Eq. (8) can be transformed into state equation form as
follows:

x(t} = A x(t) + W(t) {12)
e (L) x(t)... xT())F {13)
vhere x(t) [xl(t) xz(t) xn( 1)
- ) We)... Wl (14)
LUCENHOR ACRR UG
A = Block diag(A;, Ay, ....Ap) (15)
- H T
x () =l () & (0)/,) (16)
V=0 6] T an

and = 0 w
M d (18)

-mr 0

for r=1,2,...,n. ] _
The system described by (12) comsists of n subsystems given
by
X (t) = A xt+W(t)r=12.., n 19)

The essence of IMSC is to choose W (t) such that it depends
on x (t) alone. Thus

W (t) =G x: r=1,2,....n (20)

vhere G = 1911 %12
921 9r22

are (2x2) gain matrices. )
Substituting (16) and (17) into (20}, we find that G must
assure the following form:

6 = |o 0
: Fl'zynn.'n (n,
921 9r22

For optimal control, % and ¢ -, should be determined such that
. the following quadratic cost li%xznction is minimized (linear
regulator problem):

n
3= rTz;lJ' @)
- 7
3 =xox + WRW )t 24)

r=1,2,...,n 2

where

Q and § are positive semidefinite and positive definite
weighting matrix, respectively, associated with the rth mode.
The form of G, given by {22) requires that R, assume the form

i
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% [ ] :r=1,2,...,n (25
° 5

sinalltdeva:dson§ alone as seen in (20), J can be

minizized by minimizing each J, independently. From optisal
control theary (13), the optimal solution for G, is given by

G (t) = R K.(t) ire1,2,....0 (26)

where Kt(t) is the solution of the Riccati equation:
Ki)e KA-AK +XR L0 :m1,2,..n (@)
r rr yr ror 'r
vith boundary condition K.(T) = 0.
From (4] the solution for Gy (t) was obtained by

6 = [o | 0
i N (28)
- b -[m)r(-wr+b)+rr'1

where

re= r/ 2
r. e L
a (wrt;) +or, (29)

b= “‘i*z + 1;’1)1/2 ; r=1,2,...,0.

¥We mote that IMSC requires that the mmber of actuators be
equal to that of modelled modes.

3. KTATR IMPLEMENTATION OF INDEFENDENT MODAL SPACE OONTRCL

Bpuations (19) and (20) represent the concept of IMSC. In
order to implement (20), the modal state vectors x_for
r=1,2,...,0 must be available for measurement. In (5} a modal
filter was developed to provide an estimate of the modal state
vectors. Since this paper focuses on the probler of the
implementation of actuators, we assume that the modal state
vectors xt(t) are available for the state feedback in order to
avoid the cmplexity of getting involved in the state estimation
problem that can well be the subject of a subsequent paper.

Since it is impossible to control force at every point in
the domain D, the distributed control force is realized by m
(m¢n) discrete point force actuators applied at m points Py B,

...,P.in the domain D as given below:

£(P,0) -'t §(P-Py) Fy(t) (30)

vhere 6(P-P;) is a spatial Dirac Delta function and F. (t) is the
fcrceawlie&bytheit.hactmtamthepointPi. 1
Now substituting (30) into (10} yields

t(t)-f¢> (P))‘_“ § (PR )F (t) & 61
r 0 " i=1
Froan the property of the Dirac Delta function, (31) can be

reduced to
m

= T @) F . (32)

If we define a force vector F(t) such that
Ft) = (R0 ) ... £ )T, (33)

then using {32) the relation between F(t) and W(t) can be
expressed by .

W(t) =B F(t) (34)



ma-(s;r lZT ..;]T (35)
'(a-n = om? r=1,2,...,n (36)

for r=1,2,...,n

4. PROBLEM STATRMENT

The implementation of the IMSC scheme is illustrated in Figure 1
where the optimal state feedback law is defined by

B(t) = G x(t) 38)
vhere  H(t) = (H]() Bt} ... B(v) )T (29)
ad G = Block diaglGy, Gy, ...\ G). (40)

The optimal solution for the IMSC scheme was obtained in
Section 3} as:
W(t) = G x(t). (41)
The optimal solution is achieved if (41) is satisfied. In order
to make W(t) equal to Gx(t), the matrix D in Fig. 1 is designed
such that W(t) = H(t). From Fig. 1 we also have

F(t) = D H(t). (42)
Now substituting (42} into (34), we obtain
W(t) = B D H(t). {43)

In (43) to make W(t) = H(t), it is obvious that D is designed
such that

From the structure of B as given by (35)-(37), each (2i-1)th
rov {(odd row) of BD, for i=1,2,...,n is a row of zeros. VWe
realize that (44) can never be satisfied. However, noting that

each odd row of W(t) is also a row of zeros, if we define
B(t) = [BT BT... HT (45)
and D(t) = [D D . 2r] (46)

where B, uﬂnexthmvotaandq the ith colum of D, then
choosmq a matrix D such that

BD = {an
will ensure that W(t) = H(t). It is noted that if (47) holds,
then BD is a modified identity matrix of order (2nx2n) whose main
diagonal elements are O at the (2i-1,2i-1) position and 1 at the
(21,21) position for i=1,2,...,n.

One abvious solutioT for (47) is to choose D such that
=, - _ (48)

However for the inverse of B to exist, B must be a nonsingular
square matrix, requiring that the number of actuators be equal to
the mmber of modelled modes (x=n). Since the number of modelled
modes is usually very buge for a faithful modelling of LSS, the
required number of actuators is practically unrealizable.

The problem a_msiderad in this paper can be formilated as to
design the matrix D for a nonsquare matrix B (mn) such that (47)
is satisfied as well as possible. In other words, if this can be
done, then the LSS can be controlled by a reduced number of
actuators such that the closed-loop system is as optimal as
possible.

5. RAIN RESULY

Lemmal: Consider the following equation:

W{t) = BF(t) (49)
where ¥(t) and F(t) are matrices omnsisting of even rows of W(t)
and F(t), respectively. If the (@) matrix B has rank m, then
the solution for (49) that minimizes the weighted norm of error

;

|.(t)||’ IIv-arI\’- (51T 5 (-56) (50)

is given
b%(p - (b’sﬁ)“n"ﬁ(z). (5)
The matrix B gl
ﬁm"i"s (52)

halledt.hevmeruizednmmofi.
Proof: A proof of the above Lemaa  can be foumd in (12].

The main result of this paper is given in the following
thecren:

Theorem 1 : Consider a large flexible space structure whose
description and solution are given by (1) and (11), respectively.
If the operator L is self-adjoint, then there exists @ control
scheme with m (m(n) actuators that is suboptimal with respect to
(24) in the sense that the closed-loop eigemvalues are assigned
as closed as possible to those optimal eigenvalues specified by
IMSC.

Proof: A omtrol scheme with & recuced mumber of actuators would
be optimal if D could be selected to be a right inverse of B in
{(47). However based on the form of B given in (45) and (37) we
canussmethat!hurmkllincethedinﬁeactutm apply
point forces at m distinct points Py, . From [12] it is
well-known that an (nxm) matrix (n(n) 2‘lmrmq rank = does not
possess any right inverse. Consequently B does not have any
right inverse. According to Lemma 1, because Fi(t) as given in
(51) minimizes {50), selecting a matrix D =B will minimize the
difference BD-I paking (47) be satisfied as well as possible.
Selecting D = R also make the closed-loop eigenvalues as
identical as possible to those specified by IMSC. Thus there
exists a control scheme with a reduced number of actuators that
is suboptimal with respect to (24). Q.E.D.

6. EAFIE
To illustrate the proposed control scheme we consider the control
of a simply supported beam whose dynamic is given by the Buler-
Bernoulli partial differential equation:

EZI(3 Jox’ Julx,t) + m(2 Pat?lulx,t) = £ix,t) (53)
where for simplicity we set the mass m, the mment of inertia I,

thae modulus of elasticity E and the length of the beam to unity.
The boundary conditions fo this simply supported beam are:

u(0,t) = u(i,t) =0 (54)
3%3 2ul0,t) = 373 x(L,t) = 0 (55)
The solutions for the e:m?ml uve problem are given by:
Ag = (k) (56)
and ) = 2 sin (krx). (s7)
Computer si.m.fation was done to test the performance of the

proposed control scheme. Results show that the dynamics of the
closed-loop system is affected oonsiderably by the number and
placement of actuators. Suppose we consider 20 modelled modes
and divide the whole length of the beam into 20 sections

specified by x(k)=k/21 for k=1,2,...,21. As expected, simulation
results shov that in every case the mmber of stable closed-loop
eigenvalues increases with an increase in actuator number. The
pacimm pmbers of stable closed loop eigenvalues when using 1,
2, 3, 4 actuvators are 5, 18, 19 and 20, respectively. The

remaining eigenvalues are pure imaginary complex conjugate pairs,
thus causing no instability but unwanted cscillations. It is

also found that the actuator locations maximizing the number of
closed loop eigenvalues are centered around both ends of the

beam, namely at x=1/21 and x=20/21. Fig. 2 presents the case for
one actuator. As we see, the number of stable eigenvalues falls



off as the actuator moves toward the center of the beam. Similar
results were cbtained for the cases of 2, J and 4 actuators.
Table 1 provides tbe closed loop eigenvalues for IMSC with 20
actuators and the proposed control scheme with 4 actuators. As
the table shows even with a reduced number of actuators the
proposed control scheme assigns eigenvalues that are very close
to those specified by the optimal IMSC. Figures 3 and 4 show the
beas movement for the case of IMSC with 20 actuators and the
proposed control scheme with 4 actuators, respectively, when the
beam is excited by an impulse. As the figures show, the proposed
control scheme with a reduced mmber of actuatars performs as
well as the INSC with 20 actuators, bringing the beam movement
down to zero after 5 secunds. The time responses of mode 1 and 3
are given in Figures 5 and 6, respectively. We note that the
time respanse of mode 1 of the control scheme is almost the same
as that of IMSC. There are some insignificant differences in the
time response of mode 2. The maximum difference is about 3x10 “.

7. OCONQUSION:

In this paper, we first sumarized the theory of IMSC in the
oontext of optimal control. Then the principal limitation of
INSC was pointed out in terms of the required number of
actuators, being equal to that of modelled modes. After that, we
proposed a control scheme which employs a reduced number of
actuators to control a large space structure that is self-
adjoint. Computer simulation showed that the mumber and placement
of actuators play an important role in the stability of the
closed-loop system. The research of this paper can be extended
into studying the optimization problem of actuator placement and
designing a weighting matrix S that maximizes the number of
stable closed-loop eigenvalues. The problem of arbitrary
assignment of eigenvalues [8] can also be addressed for the
oontrol of LSS.
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